1.基本信息
(1)品系名(ming)称:NOD.Cg-Prkdcscid Il2rgtm1Vst/Vst
(2)常用名:NPG小鼠
(3)背景:NOD
(4)毛色:白色
(5) 品系建(jian)立:NPG小鼠,是北京(jing)维通达(da)生物(wu)技(ji)术有限公(gong)司自主研发的(de)一系列(lie)高度免疫缺陷大小鼠模(mo)(mo)型(xing)(xing)之一,将获得(de)的(de)Il2rg基因敲(qiao)除小鼠,回交(jiao)到NOD-scid背(bei)景建(jian)立的(de)高度免疫缺陷模(mo)(mo)型(xing)(xing)。使用该(gai)小鼠模(mo)(mo)型(xing)(xing)已(yi)经发表了一系列(lie)高水平研究论文[1~12]。
2.制作简介
首先构建了Il2rg基因打靶载体,在B6/129 F1背景的ES细胞上,筛选得到将Il2rg基因敲除的阳性打靶细胞(见图1)。通过囊胚注射的方法,获得了Il2rg基因敲除的ES嵌合小鼠。然后,将ES打靶小鼠,与NOD-scid小鼠回交,从后代中选择Il2rg因基敲除鼠,再与NOD-scid小鼠回交。通过12代的回交,获得并选择Il2rg-雄鼠和Il2rg+/-雌鼠交配,获得PrkdcscidIl2rg-/-小鼠。随后,NOD.PrkdcscidIl2rg-/- 小鼠按照近交系的方式扩繁生产。
图(tu)1. Il2rg 基因打(da)靶(ba)策(ce)略示(shi)意图(tu)
3.质控检(jian)测和表(biao)型分析
NPG小(xiao)鼠主要包括两个(ge)(ge)基(ji)因突变(bian),(1)Prkdc基(ji)因的点突变(bian),在84号外(wai)显子(zi)上(shang),TAT→TAA,产生了一个(ge)(ge)无效的包含83AA的删短蛋白;(2)Il2rg基(ji)因小(xiao)鼠,3-8外(wai)显子(zi)的编码区被删除。NPG小(xiao)鼠的SNP分析结果见表1,与NOD-scid (NOD.CB17- Prkdcscid/NcrCrlVr)小鼠一(yi)致。
表1. NPG 和NOD-scid 小鼠SNP分析结果。
SNP ID | Chr-cM | Allele | NPG | NOD-scid | |
1 | RS8253473-SNP1 | 1-80 | V=A, F=C | F F | F F |
2 | RS13476104-SNP1 | 1-128 | V=C, F=T | V V | V V |
3 | RS13476435-SNP1 | 2-35 | V=A, F=T | F F | F F |
4 | RS13476730-SNP1 | 2-119 | V=A, F=T | V V | V V |
5 | RS13477470-SNP1 | 3-146 | V=A, F=G | V V | V V |
6 | RS13478001-SNP1 | 4-135 | V=C, F=T | V V | V V |
7 | RS13478215-SNP1 | 5-42 | V=A, F=C | F F | F F |
8 | RS13459087-SNP1 | 5-86 | V=A, F=G | F F | F F |
9 | RS13478818-SNP1 | 6-73 | V=C, F=G | F F | F F |
10 | RS3710839-SNP1 | 6-121 | V=A, F=G | V V | V V |
11 | RS3666902-SNP1 | 7-15 | V=T, F=C | VV | VV |
12 | RS8260975-SNP1 | 7-34 | V=A, F=C | V V | V V |
13 | RS13479791-SNP1 | 8-60 | V=A, F=G | F F | F F |
14 | RS4227276-SNP1 | 8-80 | V=C, F=T | F F | F F |
15 | RS8254841-SNP1 | 9-38 | V=A, F=T | F F | F F |
16 | RS13480385-SNP1 | 9-103 | V=C, F=T | V V | V V |
17 | RS13480546-SNP1 | 10-24 | V=C, F=T | F F | F F |
18 | RS13480803-SNP1 | 10-123 | V=C, F=T | V V | V V |
19 | RS13480933-SNP1 | 11-25 | V=C, F=G | V V | V V |
20 | RS3653651-SNP1 | 11-102 | V=C, F=T | F F | F F |
21 | RS13481624-SNP1 | 12-99 | V=C, F=G | F F | F F |
22 | RS13481852-SNP1 | 13-63 | V=A, F=C | V V | V V |
23 | RS13482131-SNP1 | 14-30 | V=C, F=T | V V | V V |
24 | RS13459176-SNP1 | 15-3 | V=A, F=C | V V | V V |
25 | RS4170048-SNP1 | 16-32 | V=C, F=G | V V | V V |
26 | RS13482843-SNP1 | 17-4 | V=C, F=T | V V | V V |
27 | RS13483295-SNP1 | 18-35 | V=G, F=T | V V | V V |
28 | RS13483601-SNP1 | 19-34 | V=A, F=G | F F | F F |
29 | RS13483739-SNP1 | X-40 | V=C, F=T | V V | V V |
30 | RS13483962-SNP1 | X-109 | V=A, F=C | F F | F F |
NOD(non-obese diabetes) 背景适宜人源细(xi)(xi)胞(bao)(bao)(bao)(bao)移植(zhi)[13];Prkdc基因(yin)突(tu)(tu)变,小鼠(shu)T、B细(xi)(xi)胞(bao)(bao)(bao)(bao)缺失(shi)(shi)[14,15];Il2rg蛋白的(de)gamma链被敲(qiao)除(chu),其(qi)NK细(xi)(xi)胞(bao)(bao)(bao)(bao)活力几乎(hu)丧失(shi)(shi)[16,17]。因(yin)而其(qi)基因(yin)检(jian)(jian)测(ce)和表型分析主要集(ji)中在4个方(fang)面:①NOD背景(SNP检(jian)(jian)测(ce));②Prkdc点(dian)突(tu)(tu)变(PCR检(jian)(jian)测(ce);T、B细(xi)(xi)胞(bao)(bao)(bao)(bao)缺失(shi)(shi)的(de)流式(shi)检(jian)(jian)测(ce));③Il2rg敲(qiao)除(chu)(PCR检(jian)(jian)测(ce),功能性NK细(xi)(xi)胞(bao)(bao)(bao)(bao)缺失(shi)(shi)的(de)流式(shi)检(jian)(jian)测(ce));④细(xi)(xi)胞(bao)(bao)(bao)(bao)移植(zhi)重建分析。
(1) NOD背景检测(ce)
NPG小鼠制作使用的NOD-scid小鼠(shu),其遗传检(jian)测(ce)数据见右上30个(ge)SNP(single nucleotide polymorphism)位(wei)点信息表,这些(xie)位(wei)点遗传标记分布于20条染色体。
(2) Prkdc点突变、Il2rg敲除和NOD背(bei)景(jing)(Sirpa基因(yin))检测
Prkdc点突(tu)变小(xiao)鼠, 1983年(nian)由福克斯蔡斯癌症中(zhong)(zhong)心(Fox Chase Cancer Centre)的Bosma等人发(fa)现[14,15]。Prkdc(protein kinase DNA-activated catalytic)基因突(tu)变,小(xiao)鼠的T和B细(xi)胞(bao)(bao)缺失(shi) ,表现为细(xi)胞(bao)(bao)免(mian)(mian)疫(yi)和体液免(mian)(mian)疫(yi)的重(zhong)度联(lian)合免(mian)(mian)疫(yi)缺陷(xian)(severe combined immune deficiency, scid)。Il2rg敲除小(xiao)鼠表现为胸腺(xian)发(fa)育不全,NK细(xi)胞(bao)(bao)数量减(jian)少,活(huo)(huo)性丧(sang)失(shi)[16,17]。目前Prkdc点突(tu)变常用(yong)(yong)的检(jian)测(ce)方(fang)(fang)法为PCR检(jian)测(ce);蛋白(bai)水平的检(jian)测(ce)比较方(fang)(fang)便的是流式分析(xi)其外周(zhou)血中(zhong)(zhong)T、B淋巴细(xi)胞(bao)(bao)的含量。Il2rg敲除常用(yong)(yong)的检(jian)测(ce)方(fang)(fang)法为PCR检(jian)测(ce);蛋白(bai)水平的检(jian)测(ce)比较方(fang)(fang)便的是流式分析(xi)其脾脏中(zhong)(zhong)NK细(xi)胞(bao)(bao)的含量和活(huo)(huo)性。NPG小(xiao)鼠采(cai)用(yong)(yong)上(shang)述方(fang)(fang)法进行质(zhi)控,结果见下图。
图2 Prkdc基因PCR检测 图3 Il2rg基因(yin)PCR检测(ce)
图4 NOD背景(Sirpa基因(yin))检测(ce)
(3) T、B和(he)NK细胞(bao)检测
图5 NPG小鼠(shu)缺失有功能的(de)T、B和(he)NK细(xi)胞(bao)。流式(shi)分(fen)析(xi)B6, Balb/c nude和(he)NPG小鼠(shu)外周血中CD3+ CD4+ or CD3+CD8+ T 细(xi)胞(bao) , B220+ B 细(xi)胞(bao)和(he)NKp46+ NK 细(xi)胞(bao)的(de)含(han)量。
(4) 造血干(gan)细胞移植重建和肿瘤细胞移植数据
① NPG小(xiao)鼠移植人造血干细胞效果显著优于NOD-scid小(xiao)鼠。
图(tu)6 NPG和NOD-scid小鼠移(yi)植(zhi)人(ren)造血干细(xi)胞(bao),第12周时人(ren)CD45+细(xi)胞(bao)嵌(qian)合率分(fen)析。左图(tu)为移(yi)植(zhi)后12周时外周血中人(ren)CD45+细(xi)胞(bao)比例的流式分(fen)析结果;右(you)图(tu)为骨髓中人(ren)CD45+细(xi)胞(bao)的比例。
②人造血(xue)干细胞(HSCs)移(yi)植NPG小鼠高水平(ping)重建(jian)造血(xue)系统
图7 NPG小鼠移植(zhi)人造血干细胞(HSCs)后,可以高水平(ping)重(zhong)建(jian)造血系(xi)统。左图为将 5×104脐带血(xue)CD34+细胞(bao)通过骨(gu)髓移植入6-8周的NPG小鼠后检测结(jie)果(guo); 右(you)图为(wei)1×105脐带血(xue)CD34+细(xi)胞移植后(hou)16周在(zai)NPG小鼠脾(pi)脏中检测到高水平的(de)人(ren)CD45+细(xi)胞
③人造血(xue)干细胞(HSCs)移植NPG小鼠后重建各(ge)系造血(xue)细胞比例检测(ce)
图(tu)8人造血(xue)(xue)干细(xi)(xi)(xi)胞(bao)(bao)(HSCs)移植NPG小鼠(shu)后获得(de)各系造血(xue)(xue)细(xi)(xi)(xi)胞(bao)(bao)分(fen)化的(de)高水(shui)平(ping)重建。上(shang)图(tu)显示的(de)为将(jiang)5×104脐(qi)带血(xue)(xue)CD34+细(xi)(xi)(xi)胞(bao)(bao)移植16周后,在NPG小鼠(shu)外周血(xue)(xue)中检测到高水(shui)平(ping)的(de)人CD45+细(xi)(xi)(xi)胞(bao)(bao)(46.54%)、CD19+ B细(xi)(xi)(xi)胞(bao)(bao)(70.9%)、CD3+ T细(xi)(xi)(xi)胞(bao)(bao)(17.33%)和CD33+髓系细(xi)(xi)(xi)胞(bao)(bao)(8%)。
图(tu)9 人造血(xue)(xue)干(gan)细(xi)胞(HSCs)移(yi)植NPG小鼠后各系(xi)细(xi)胞重(zhong)建。脐带血(xue)(xue)CD34+细(xi)胞移(yi)植NPG小鼠12周以及更(geng)长(zhang)时间之后,人源造血(xue)(xue)细(xi)胞稳定(ding)重(zhong)建,T细(xi)胞所占比(bi)例逐渐(jian)升高。
④NPG小鼠肿瘤免疫(yi)治疗的相关研究(jiu)
图10 人肿瘤细胞移植NPG小鼠后更容易成瘤。上图为使用NPG小鼠和BALB/c裸鼠,皮下接种人黑色素瘤细胞A375SM后,活体成像的肿瘤示踪图,可见NPG小鼠成瘤,与裸鼠相比,大小更均匀,生长到一定体积需要的时间相对更短。
4. 应用(yong)领域
(1)人源细胞(bao)或组织移植
(2)肿(zhong)瘤和肿(zhong)瘤干细胞研究
(3)ES和iPS细胞研究
(4)造血和免疫学研究
(5)人类疾病感染模型研究
(6)人源化动物模型研发
5. 参考文(wen)献(xian)
1. CRISPR-Edited Stem Cells in a Patient with HIV and Acute Lymphocytic Leukemia.Xu L, Wang J, Liu Y, Xie L, Su B, Mou D, Wang L, Liu T, Wang X, Zhang B, Zhao L, Hu L, Ning H, Zhang Y, Deng K, Liu L, Lu X, Zhang T, Xu J, Li C, Wu H, Deng H, Chen H.N Engl J Med. 2019 Sep 26;381(13):1240-1247. doi: 10.1056/NEJMoa1817426. Epub 2019 Sep 11.
2. Teng R, Zhao J, Zhao Y, Gao J, Li H, Zhou S, Wang Y, Sun Q, Lin Z, Yang W, Yin M, Wen J, Deng H. J Immunother. 2019 Feb/Mar; 42(2):33-42. doi: 10.1097/CJI.0000000000000251.
3.Targeting JNK pathway promotes human hematopoietic stem cell expansion.Xiao X, Lai W, Xie H, Liu Y, Guo W, Liu Y, Li Y, Li Y, Zhang J, Chen W, Shi M, Shang L, Yin M, Wang C, Deng H.Cell Discov. 2019 Jan 8;5:2. doi: 10.1038/s41421-018-0072-8. eCollection 2019.
4. Efficient derivation of extended pluripotent stem cells from NOD-scid Il2rg-/- mice.Du Y, Wang T, Xu J, Zhao C, Li H, Fu Y, Xu Y, Xie L, Zhao J, Yang W, Yin M, Wen J, Deng H.Protein Cell. 2019 Jan;10(1):31-42. doi: 10.1007/s13238-018-0558-z. Epub 2018 Jun 13.
5.Engineered T lymphocytes eliminate lung metastases in models of pancreatic cancer.Sun Q, Zhou S, Zhao J, Deng C, Teng R, Zhao Y, Chen J, Dong J, Yin M, Bai Y, Deng H, Wen J.Oncotarget. 2018 Jan 10;9(17):13694-13705. doi: 10.18632/oncotarget.24122. eCollection 2018 Mar 2.
6.Derivation of Pluripotent Stem Cells with In Vivo Embryonic and Extraembryonic Potency. Cell. 2017 Apr 6;169(2):243-257.e25. doi: 10.1016/j.cell.2017.02.005.
7.CRISPR-Cas9-mediated multiplex gene editing in CAR-T cells. Cell Res. 2017 Jan;27(1):154-157. doi: 10.1038/cr.2016.142. Epub 2016 Dec 2.
8.Xu L, Yang H, Gao Y, Chen Z, Xie L, Liu Y, Liu Y, Wang X, Li H, Lai W, He Y, Yao A, Ma L, Shao Y, Zhang B, Wang C, Chen H, Deng H.Mol Ther. 2017 Aug 2;25(8):1782-1789. doi: 10.1016/j.ymthe.2017.04.027. Epub 2017 May 17
9.Cell Discov. 2015 Dec 8;1:15040. doi: 10.1038/celldisc.2015.40.
10.A XEN-like State Bridges Somatic Cells to Pluripotency during Chemical Reprogramming. Cell. 2015 Dec 17;163(7):1678-91. doi: 10.1016/j.cell.2015.11.017. Epub 2015 Dec 10.
11.Efficient derivation of embryonic stem cells from NOD-scid Il2rg (-/-) mice. Protein Cell. 2015 Dec;6(12):916-8. doi: 10.1007/s13238-015-0209-6.
12.Generation of naive induced pluripotent stem cells from rhesus monkey fibroblasts.Cell Stem Cell. 2014 Oct 2;15(4):488-497. doi: 10.1016/j.stem.2014.09.004.
13., et al. Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells. 2007 ;8(12):1313-23.
14.Bosma GC et al. A severe combined immunodeficiency mutation in the mouse. Nature, 1983; 301(5900): 527-30.
15.Bosma GC et al. The mouse mutation severe combined immune deficiency (scid) is on chromosome 16. Immunogenetics, Jan 1989; 29(1): 54-7.
16. et al. Modulation of hematopoiesis in mice with a truncated mutant of the interleukin-2 receptor gamma chain. 1996 Feb 1;87(3):956-67.
17. et al. Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain. 1995 Mar;2(3):223-38.